Кислотно-основное состояние (КОС) крови

ISSN 1996-3955 ИФ РИНЦ = 0,570

Кислотно-основное состояние (КОС) крови
1 Моррисон В.В. 1 Чеснокова Н.П. 1 Бизенкова М.Н. 1 1 ГБОУ ВПО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России 1. Агапов Ю.Я. Кислотно-щелочной баланс. – М., 1968. – 184 с.
2. Войнов В.А. Атлас по патофизиологии. – М., 2004. – 218 с.
3. Гусев Г.П.

Роль почки в регуляции кислотно-щелочного баланса // Физиология почки: Руководство по физиологии. – Л., 1972. – С. 142–168.
4. Жалко-Титаренко В.Ф. Водно-электролитный обмен и кислотно-основное состояние в норме и патологии. – Киев, 1989.
5. Костюченко С.С. Кислотно-щелочной баланс в интенсивной терапии. – Минск, 2009. – 268 с.
6.

Лосев Н.И., Войнов В.А. Физико-химический гомеостаз организма // Гомеостаз / Под ред. П.Д. Горизонтова. – М., 1981. – С. 186–240.
7. Малышев В.Д. Кислотно-основное состояние и водно-электролитный баланс в интенсивной терапии: Учебное пособие. – М.: ОАО «Издательство «Медицина», 2005. – 228 с.
8. Рут Г.

Кислотно-щелочное состояние и электролитный баланс. – М., 1978. 118 с.
9. Тавс Г. Газы крови и кислотно-щелочное равновесие // Физиология человека. Т.3 / Под ред. Р. Шмидта и Г. Тавса. – М., 1986. – С. 241–268.
10. Хейтц У., Горн М. Водно-электролитный и кислотно-основный баланс: краткое руководство. – М.: БИНОМ.

Лаборатория знаний, 2009. – 359 с.
11. Хруска К. Патофизиология кислотно-основного обмена // Почки и гомеостаз в норме и патологии. – М., 1987. – С. 170–216.

Кислотно-основное состояние (КОС) организма является одним из важнейших и наиболее строго стабилизируемых параметров гомеостаза.

От соотношения водородных и гидроксильных ионов во внутренней среде организма зависят активность ферментов, гормонов, интенсивность и направленность окислительно-восстановительных реакций, процессы обмена белков, углеводов и жиров, функции различных органов и систем, постоянство водного и электролитного обмена, проницаемость и возбудимость биологических мембран и т.д. Активность реакции среды влияет на способность гемоглобина связывать кислород и отдавать его тканям.

Активную реакцию среды принято оценивать по содержанию в жидкостях ионов водорода.

Величина рН является одним из самых «жестких» параметров крови и колеблется у человека в норме в очень узких пределах – рН артериальной крови составляет 7,35–7,45; венозной – 7,32–7,42. Более значительные изменения рН крови связаны с патологическими нарушениями обмена. В других биологических жидкостях и в клетках рН может отличаться от рН крови.

Сдвиги рН крови за указанные границы приводят к существенным сдвигам окислительно-восстановительных процессов, изменению активности ферментов, прницаемости биологических мембран, обусловливают нарушения со стороны функции сердечно-сосудистой, дыхательной и других систем; сдвиг на 0,3 может вызвать коматозные состояния, а на 0,4 – зачастую несовместим с жизнью.

Кислотно-основное состояние поддерживается мощными гомеостатическими механизмами. В их основе лежат особенности физико-химических свойств буферных систем крови и физиологические процессы, в которых принимают участие системы внешнего дыхания, почки, печень, желудочно-кишечный тракт и др.

Химические буферные системы образуют первую линию защиты против изменений рН жидкости организма, действуют для быстрого их предотвращения.

Буферной системой называют смеси, которые обладают способностью препятствовать изменению рН среды при внесении в нее кислот или оснований.

Буферные системы не удаляют H+ из организма, а «связывают» его своим щелочным компонентом до окончательного восстановления КОС.

Буферными свойствами обладают смеси, которые состоят из слабой кислоты и ее соли, содержащей сильное основание, или из слабого основания и соли сильной кислоты.

Наиболее емкими буферными системами крови являются бикарбонатный, фосфатный, белковый и гемоглобиновый. Первые три системы особенно важную роль играют в плазме крови, а гемоглобиновый буфер, самый мощный, действует в эритроцитах.

Бикарбонатный буфер является наиболее важной внеклеточной буферной системой и состоит из слабой угольной кислоты Н2СО3 и соли ее аниона – сильного основания . Угольная кислота образуется в результате взаимодействия углекислого газа и воды: CO2 + H2O ↔ H2CO3. Угольная кислота в свою очередь диссоциирует на водород и бикарбонат: H2CO3 ↔ H+ + HCO3-.

В нормальных условиях (при рН крови около 7,4) в плазме бикарбоната в 20 раз больше, чем углекислоты.

Емкость бикарбонатной системы составляет 53 % всей буферной емкости крови. При этом на бикарбонат плазмы приходится 35 % и на бикарбонат эритроцитов 18 % буферной емкости.

При образовании в плазме избытка кислореагирующих продуктов ионы водорода соединяются с анионами бикарбоната (). Образующийся при этом в плазме избыток углекислоты поступает в эритроциты и там с помощью угольной ангидразы разлагается на углекислый газ и воду.

Углекислый газ выделяется в плазму, возбуждает дыхательный центр и избыток СО2 удаляется из организма через легкие.

Это быстрое преобразование бикарбонатом любой кислоты в угольную, которая легко удаляется легкими, делает бикарбонатный буфер самой лабильной буферной системой.

Бикарбонатный буфер способен нейтрализовать и избыток оснований. В этом случае ионы ОНˉ будут связаны углекислотой и вместо самого сильного основания ОНˉ образуется менее сильное , избыток которого в виде бикарбонатных солей выделяется почками.

До тех пор, пока количество угольной кислоты и бикарбоната натрия изменяется пропорционально и соотношение между ними сохраняется 1:20, рН крови остается в пределах нормы.

Фосфатный буфер представлен солями одно- и двузамещенных фосфатов. Фосфатная буферная система обеспечивает 5 % буферной емкости крови, является основной буферной системой клеток.

Однозамещенная соль обладает кислыми свойствами, так как при диссоциации дает ион , который далее способен выделять ион водорода: NаН2РО4 ⇒ Nа+ + ; ⇒Н+ + . Двузамещенный фосфат обладает свойствами основания, так как диссоциирует с образованием иона , который может связывать ион водорода: + Н+ ⇒ .

При нормальном рН в плазме соотношение фосфатных солей NаН2РО4: Nа2НРО4 = 1:4. Этот буфер имеет значение в почечной регуляции КОС, а также в регуляции реакции некоторых тканей. В крови же его действие главным образом сводится к поддержанию постоянства и воспроизводства бикарбонатного буфера.

Белковая буферная система является довольно мощным буфером, который способен проявлять свои свойства за счёт амфотерности белков. Белковая буферная система обеспечивает 7 % буферной емкости крови. Белки плазмы крови содержат достаточное количество кислых и основных радикалов, поэтому эта буферная система действует в зависимости от среды, в которой происходит диссоциация белков.

Гемоглобиновый буфер является самой емкой буферной системой. На ее долю приходится до 75 % всей буферной емкости крови. Свойства буферной системы гемоглобину придает главным образом его способность постоянно находиться в виде двух форм – восстановленного (редуцированного) гемоглобина ННb и окисленного (оксигемоглобина) НbО2.

Гемоглобиновый буфер, в отличие от бикарбонатного, в состоянии нейтрализовать как нелетучие, так и летучие кислоты. Окисленный гемоглобин ведёт себя как кислота, увеличивая концентрацию ионов водорода, а восстановленный (дезоксигенированный) – как основание, нейтрализуя H+.

Гемоглобин является классическим примером белкового буфера и эффективность его достаточно высока. Гемоглобин в шесть раз более эффективен как буфер, чем плазменные протеины.

Переход окисленной формы гемоглобина в восстановленную форму предупреждает сдвиг рН в кислую сторону во время контакта крови с тканями, а образование оксигемоглобина в легочных капиллярах предотвращает сдвиг рН в щелочную сторону за счет выхода из эритроцитов СО2 и иона хлора и образования в них бикарбоната.

Система аммиак/ион аммония (NH3/NH4+) – действует преимущественно в моче.

Помимо буферных систем в поддержании постоянства рН активное участие принимают физиологические системы, среди которых основными являются легкие, почки, печень, желудочно-кишечный тракт.

Система дыхания играет значительную роль в поддержании кислотно-щелочного баланса организма, однако для нивелирования сдвига рН крови им требуется 1–3 минуты.

Роль легких сводится к поддержанию нормальной концентрации углекислоты, и основным показателем функционального состояния легких является парциальное напряжение углекислого газа в крови.

Легочные механизмы обеспечивают временную компенсацию, так как при этом происходит смещение кривой диссоциации оксигемоглобина влево и уменьшается кислородная емкость артериальной крови.

При устойчивом состоянии газообмена легкие выводят углекислого газа около 850 г в сутки. Если напряжение углекислого газа в крови повышается сверх нормы на 10 мм рт. ст., вентиляция увеличивается в 4 раза.

Роль почек в регуляции активной реакции крови не менее важна, чем деятельность дыхательной системы. Почечный механизм компенсации более медленный, чем респираторный. Полноценная почечная компенсация развивается только через несколько дней после изменения pH.

Экскреция кислот при обычной смешанной пище у здорового человека превышает выделение оснований, поэтому моча имеет кислую реакцию (рН 5,3–6,5) и концентрация в ней ионов водорода примерно в 800 раз выше, чем в крови.

Почки вырабатывают и выделяют с мочой количество ионов водорода, эквивалентное их количеству, непрерывно поступающему в плазму из клеток организма, совершая при этом замену ионов водорода, секретируемых эпителием канальцев, на ионы натрия первичной мочи.

Этот механизм осуществляется с помощью нескольких химических процессов.

Первым из них является процесс реабсорбции натрия при превращении двузамещенных фосфатов в однозамещенные. При истощении фосфатного буфера (при рН мочи ниже 4,5) реабсорбция натрия и бикарбоната осуществляется за счет аммониогенеза.

Второй процесс, который обеспечивает задержку натрия в организме и выведение излишка ионов водорода, – это превращение в просвете канальцев бикарбонатов в угольную кислоту.

Третьим процессом, который способствует сохранению натрия в организме, является синтез в дистальных почечных канальцах аммиака (аммониогенез) и использование его для нейтрализации и выведения кислых эквивалентов с мочой.

Образовавшийся свободный аммиак легко проникает в просвет канальцев, где, соединяясь с ионом водорода, превращается в плохо диффундирующий аммонийный катион , не способный вновь вернуться в клетку стенки канальца.

В общем итоге концентрация водородных ионов в моче может превышать концентрацию водородных ионов в крови в несколько сотен раз.

Это свидетельствует об огромной способности почек выводить из организма ионы водорода.

Почечные механизмы регуляции КОС не могут скорректировать рН в течение нескольких минут, как респираторный механизм, но они функционируют в течение нескольких дней, пока рН не вернется к нормальному уровню.

Регуляция КОС с участием печени.

Печень окисляет до конечных продуктов недоокисленные вещества крови, оттекающей от кишечника; синтезирует мочевину из азотистых шлаков, в частности из аммиака и из хлорида аммония, поступающих из желудочно-кишечного тракта в кровь портальной вены; печени присуща выделительная функция и поэтому при накоплении в организме избыточного количества кислых или щелочных продуктов метаболизма они могут выделяться с желчью в желудочно-кишечный тракт. При избытке кислот в печени усиливается их нейтрализация и одновременно тормозится образование мочевины. Неиспользованный аммиак нейтрализует кислоты и увеличивает выведение аммонийных солей с мочой. При возрастании количества щелочных валентностей мочекинообразование возрастает, а аммониогенез снижается, что сопровождается уменьшением выведения с мочой аммонийных солей.

Концентрация водородных ионов в крови зависит также от деятельности желудка и кишечника. Клетки слизистой желудка секретируют соляную кислоту в очень высокой концентрации.

При этом из крови ионы хлора выделяются в полость желудка в соединении с ионами водорода, образующимися в эпителии желудка с участием карбоангидразы.

Взамен хлоридов в плазму в процессе желудочной секреции поступает бикарбонат.

https://www.youtube.com/watch?v=QpO2PI2jf5Y

Поджелудочная железа активно участвует в регуляции рН крови, так как она генерирует большое количество бикарбоната. Образование бикарбоната тормозится при избытке кислот и усиливается при их недостатке.

Кожа может в условиях избытка нелетучих кислот и оснований выделять последние с потом. Это имеет особое значение при нарушении функции почек.

Костная ткань. Это наиболее медленно реагирующая система. Механизм ее участия в регуляции рН крови состоит в возможности обмениваться с плазмой крови ионами Са2+ и Na+ в обмен на протоны Н+.

Происходит растворение гидроксиапатитных кальциевых солей костного матрикса, освобождение ионов Са2+ и связывание ионов НРО42– с Н+ с образованием дигидрофосфата, который уходит с мочой.

Параллельно при снижении рН (закисление) происходит поступление ионов H+ внутрь остеоцитов, а ионов калия – наружу.

Оценка кислотно-основного состояния организма

При изучении кислотно-щелочного баланса наибольшее значение имеет исследование крови. Показатели в капиллярной крови близки к показателям артериальной. В настоящее время показатели КОС определяют эквилибрационным микрометодом Аструпа.

Данная методика позволяет, помимо истинного рН крови, получить показатель напряжения СО2 в плазме (рСО2), истинный бикарбонат крови (АВ), стандартный бикарбонат (SB), сумму всех оснований крови (ВВ) и показатель дефицита или избытка оснований (ВЕ).

Библиографическая ссылка

Моррисон В.В., Чеснокова Н.П., Бизенкова М.Н. КИСЛОТНО-ОСНОВНОЕ СОСТОЯНИЕ. РЕГУЛЯЦИЯ КИСЛОТНО-ОСНОВНОГО ГОМЕОСТАЗА (ЛЕКЦИЯ 1) // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 3-2. – С. 270-273;
URL: https://applied-research.ru/ru/article/view?id=6529 (дата обращения: 29.01.2020).

Источник: https://applied-research.ru/ru/article/view?id=6529

Физиология и нарушения кислотно-основного состояния (методические материалы к практическим и семинарским занятиям)

Кислотно-основное состояние (КОС) крови

Снижение или повышение одного показателя – рН крови – свидетельствует об ацидозе или алкалозе, но не дает исчерпывающего ответа на вопрос, какой компонент КЩС нарушен: респираторный или метаболический.

Если же интерпретируются два показателя (рН и рС02), то определение первичности нарушения КЩС становится возможным (таб. 1).

Таблица 1. Определение первичности нарушения КЩС

рН артериальной крови(норма 7,35 – 7,45) рС02 (норма 35 -45 мм рт.ст.) Первичное нарушение
Снижен Повышено Дыхательный ацидоз
Снижен Норма или снижено Метаболический ацидоз
Повышен Повышено или норма Метаболический алкалоз
Повышено Снижено Дыхательный алкалоз
Норма ПониженоСмешанная формадыхательного алкалоза иметаболического ацидоза
Норма ПовышеноСмешанная формадыхательного ацидоза иметаболического алкалоза

Кислотно-основной гомеостаз крови характеризуют следующие показатели:

рН — показатель активной реакции крови; суммарно отражает функциональное состояние дыхательных и метаболических компонентов и изменяется в случае превышения возможностей всех буферных систем (в норме 7,35 — 7,45).

рСО2 (мм рт. ст.) — напряжение углекислоты в крови; единственный дыхательный показатель КОГ, отражающий функциональное состояние системы дыхания, изменяющееся при ее патологии и в результате компенсаторных реакций при метаболических сдвигах (в норме 35-45 мм рт.ст. в артериальной крови).

АВ (ммоль/л) — истинные бикарбонаты крови (aktual bikarbonate); концентрация ионов угольной кислоты, НС03- при физическом состоянии крови в кровеносном русле, т. е. определенное без соприкосновения с воздухом при температуре 38°С (в норме 21,8-27,2 ммоль/л).

SВ (ммоль/л) — стандартный бикарбонат (standart bikar-bonate); концентрация бикарбонатных ионов (НС03-, измеренная при стандартных условиях: рС02 — 5,3 кПа (40 мм рт. ст.), при температуре 38°С и полном насыщении гемоглобина кислородом. Характеризует смещение ионов бикарбонатной системы.

Этот показатель считается более ценным в диагностическом отношении, чем истинный бикарбонат, поскольку отражает только метаболические сдвиги (в норме 21,6—26,9 ммоль/л).

ВВ (ммоль/л) — буферные основания крови (buffer base); общая концентрация буферных ионов бикарбонаты, белки, гемоглобин в полностью оксигенированной крови. Диагностическое значение этого показателя небольшое, т.к. он меняется в зависимости от рС02, концентрация гемоглобина (в норме 43,7-53,5 ммоль/л).

BE (ммоль/л) — избыток или недостаток буферных оснований (base excess). Характеризует сдвиг ионов всех буферных систем и указывает на природу нарушений кислотно-основного гомеостаза.

Отрицательное значение BE отражает дефицит оснований или избыток кислот.

При метаболических сдвигах КОГ крови смещение BE будет выражено более значительно, чем при дыхательных нарушениях (в норме BE = -3 — + 3 ммоль/л).

АР- анионная разница. В основе клинического применения показателя АР лежит предположение, что любой раствор, включая плазму, должен быть электронейтральным, т.е. сумма катионов равна сумме анионов.

Плазма содержит один главный измеряемый катион Na+ и два главных измеряемых аниона СI- и НСОз-. Вклад других неизмеряемых анионов (НА) и катионов (НК) невелик (таб. 2).

Из этого следует, что сумма измеряемых и неизмеряемых анионов равна сумме измеряемых и неизмеряемых катионов:

НА + (СI- + НСОз-) = НК + Na+

Таблица 2. Анионная разница

Пользуясь данными таблицы можно рассчитать АР:

АР = НА – НК = 23 – 11 = 12 мэкв/л

АР = НА – НК = Na+- (СI- + НСОз-)

В случаях увеличения Н+ неравенство между измеряемыми в плазме концентрациями катионов и анионов выйдет за пределы нормального диапазона 9 – 13 мэкв/л.

Показатель АР может быть полезен для выявления этиологии метаболического ацидоза.

Как правило, чем больше АР, тем легче определить причину ацидоза.

Высокая АР характерна для лактат-ацидоза, вызванного анаэробным гликолизом. Диабетический кетоацидоз и уремия также сопровождается увеличением АР.

Если при высокой АР уровень лактата, кетона и креатинина нормальный, наиболее вероятно, что причиной ацидоза является прием токсичных веществ (метанол, паральдегид, этанол, этиленгликоль, лекарственные средства).

Высокий уровень салицилатов в плазме сопровождается значительным увеличением АР.

Классификация нарушений КЩС

1. Простые нарушения:

Ацидоз: – метаболический  – респираторный Алкалоз: – метаболический

– респираторный 

2.Смешанные нарушения:

2.1 Однонаправленные: метаболический и дыхательный ацидоз и алкалоз
2.2 Разнонаправленные:

– метаболический ацидоз и дыхательный алкалоз
– метаболический алкалоз и дыхательный ацидоз

По степени компенсации:

1. Компенсированный.

Значения рН остаются в пределах нормы (рН=7,35 – 7,45), содержание бикарбонатов и СО2 изменяется в зависимости от направленности метаболических и респираторных сдвигов.

2. Субкомпенсированный.

Кроме изменений в содержании бикарбонатов и СО2 изменяется и рН, но в незначительных пределах + 0,04 (рН=7,31 – 7,49)

3. Некомпенсированный.

рН < 7,30 – некомпенсированный ацидоз;

рН > 7,50 – некомпенсированный алкалоз.

Метаболический ацидоз

Метаболический ацидоз возникает вследствие существенного снижения уровня бикарбоната в организме.

Причины:

1. Увеличение продукции нелетучих кислот.

Усиленная продукция кислых метаболитов (так называемых кетокислот — (3-гидроксибутирата и ацетоацетата) является одной из характерных особенностей неконтролируемого или плохо контролируемого инсулинзависимого диабета. При этом состоянии, называемом диабетическим кетоацидозом, количество бикарбоната в крови значительно снижается из-за его использования для нейтрализации избытка кислот.

В клетках, которые в значительной мере лишены кислорода и, поэтому, не могут метаболизировать (окислять) глюкозу происходит накопление лактата. Такое существенное накопление лактата в крови в количествах, достаточных для развития метаболического ацидоза, происходит, если ткани неадекватно перфузируются кровью, а следовательно и недостаточно оксигенируются.

Наиболее яркой причиной лактоацидоза при нарушении перфузии тканей является гиповолемический шок. Кроме того, лактоацидоз может возникать при почечной или печеночной недостаточности, диабете, сепсисе и лейкемии.

2. Увеличение потерь оснований.

Бикарбонат секретируется в полость тонкого кишечника для осуществления пищеварения и абсорбируется в нижних отделах желудочно-кишечного тракта. Если реабсорбции не происходит, он теряется с фекалиями.

Любые заболевания пищеварительного тракта (например, тяжелая диарея) могут привести к потерям бикарбоната из организма в количествах, достаточных для развития метаболического ацидоза.

Также потеря бикарбонатов может быть связана с почечной недостаточностью (проксимальный канальцевый ацидоз – почечный ацидоз II типа). Ухудшение реабсорбции Nа+ приводит появлению щелочной реакции мочи. Кроме этого, проксимальный канальцевый ацидоз характеризуется снижением уратов, фосфатов и калия в сыворотке крови, глюкозурией и аминоацидурией.

С помощью величины АР можно отличить потери НСОз- при диарее от потерь НСОз-, вызванных почечным канальцевым ацидозом таб. 3.

Таблица 3. Анионная разница по (П.Марино, 1998)

АР мочиАР = (Nа+ + К+) – СI- рН мочи диагноз
Отрицательная Положительная Отрицательная  Патологии нет  Почечный канальц. ацидоз  Диарея

3. Увеличение поступлений в организм кислот извне.

Злоупотребление кислой пищей, прием внутрь соляной кислоты, введение в больших количествах старой консервированной крови

4. Уменьшение выведения ионов Н+ через почки.

В нормальных условиях почки выводят Н+ в виде титруемой кислоты (фосфаты, сульфаты) и аммиака. Этот механизм может быть нарушен при заболеваниях почек, недостаточности надпочечников, дистальном почечном канальцевом ацидозе и гиперальдостеронизме. При почечной недостаточности, уменьшении числа функционирующих нефронов адекватная фильтрация и выведение Н+ отсутствуют.

При почечном ацидозе I типа (дистальный канальцевый ацидоз) секреция Н+ в дистальных канальцах нарушается. Поскольку экскреция Н+ в дистальных канальцах зависит от обмена Nа+ , уменьшение объема жидкости способствует нарастанию ацидоза.

Посредством такого же механизма, связанного с уменьшением поставки Nа+ в канальцы почек, адреналиновая недостаточность и селективный гипоальдостеронизм также приводят к ухудшению экскреции Н+.

При этом метаболический ацидоз сочетается с другими формами нарушений электролитного обмена: гиперкалиемией, гипонатриемией, гиперкальциемией.

Компенсаторные реакции

Снижение уровня НСО3– в плазме крови (метаболический ацидоз), возникающее первично, компенсируется увеличением легочной вентиляции и снижением рС02, при этом соотношение рС02 /НСО3– остается неизменным.

Увеличение содержания кислот буферируется бикарбонатным буфером:

НС1 + H 2C03/NаHC03 ↔ Nа Сl+ H 2C03

                                                                         ↓

                                                                  С02 + Н2О

Диагностические критерии:

1. При сниженном рН нормальный или пониженный уровень рСО2 указывает на первичный метаболический ацидоз;

2. При нормальной величине рН пониженный уровень рСО2 указывает на смешанную форму дыхательного алкалоза и метаболического ацидоза;

3. При нормальной величине рН нормальный уровень рСО2 может свидетельствовать о том, что показатели КЩС находятся в пределах нормы, но не исключается возможность смешанных метаболических алкалозов/ацидозов.

В этих случаях определяют АР и по этому показателю судят об изменениях КЩС.

4. Дефицит оснований – АВ, ВЕ, ВВ, SВ.

Клинические формы ацидоза

Лактат – ацидоз
 

Этиопатогенез.

1. Снижение оксигенации тканей – тканевая гипоксия. Наибольшее значение придают циркуляторным нарушениям (кардиогенный, септический, гиповолемический шок). Наличие всех форм гипоксии теоретически способствует развитию лактат-ацидоза. Остановка сердца сопровождается анаэробным обменом веществ и лактат-ацидозом;

2. Нарушения функции печени снижают ее способность к превращению молочной кислоты в глюкозу и гликоген.

3. Недостаток тиамина (витамин В1) у больных, злоупотребляющих алкоголем ведет к угнетению окисления пирувата в митохондриях и способствует накоплению молочной кислоты.

4. Повышение правовращающего изомера молочной кислоты (D-лактат-ацидоз), неопределяемого стандартными лабораторными методиками. Это изомер образуется в результате действия микроорганизмов, расщепляющих глюкозу в кишечнике.

Чаще всего встречается у больных после обширных операций на кишечнике, при дисбактериозе, нарушениях функции ЖКТ. По-видимому, это наиболее распространенное нарушение КЩС, но оно часто не диагностируется (П.

Марино, 1998);

5. Не исключается возможность лактат-ацидоза при длительных инфузиях адреналина и других сосудосуживающих средств.

6. Лактат-ацидоз может развиться в случаях использования натрия нитропруссида, при метаболизме которого образуются цианиды, способные нарушать процессы окислительного фосфорилирования.

Диагностика лактат-ацидоза:

– наличие метаболического ацидоза, связанного с повышенной АР;

– выраженный дефицит оснований;

– АР>30 мэкв/л, в то время как другие причины, вызывающие ацидоз (кетоацидоз, почечная недостаточность, введение токсических веществ), отсутствуют;

– уровень молочной кислоты в венозной крови превышает 2 мэкв/л. Этот показатель отражает интенсивность образования лактата в тканях.

Лечение:

Устранение причины лактат-ацидоза.

Введение натрия бикарбоната показано при рН

Источник: https://diseases.medelement.com/material/%D1%84%D0%B8%D0%B7%D0%B8%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F-%D0%B8-%D0%BD%D0%B0%D1%80%D1%83%D1%88%D0%B5%D0%BD%D0%B8%D1%8F-%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D0%BD%D0%BE-%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D0%BE%D0%B3%D0%BE-%D1%81%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D1%8F-%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5-%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D1%8B-%D0%BA-%D0%BF%D1%80%D0%B0%D0%BA%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%BC-%D0%B8-%D1%81%D0%B5%D0%BC%D0%B8%D0%BD%D0%B0%D1%80%D1%81%D0%BA%D0%B8%D0%BC-%D0%B7%D0%B0%D0%BD%D1%8F%D1%82%D0%B8%D1%8F%D0%BC/86321383144099

Расшифровать анализы. Кислотно-основное состояние крови | deus1.com – эффективные методы омоложения и оздоровления. Сайт лаборатории Fluids

Кислотно-основное состояние (КОС) крови

6.1. Показатели кислотно-основного состояния

6.2. Нарушения кислотно-основного состояния

 * * *

Активная реакция крови — чрезвычайно важная гомеостатическая константа организма, обеспечивающая течение окислительно-восстановительных процессов, деятельность ферментов, направление и интенсивность всех видов обмена.

Кислотность или щелочность раствора зависит от содержания в нем свободных ионов водорода [Н+]. Количественно активная реакция крови характеризуется водородным показателем — рН (power hydrogen — «сила водорода»).

Водородный показатель — отрицательный десятичный логарифм концентрации водородных ионов, т. е. pH = -lg[H + ].

Символ рН и шкалу рН (от 0 до 14) ввел в 1908 г. Сервисен. Если рН равно 7,0 (нейтральная реакция среды), то содержание ионов Н + равно 10 7  моль/л. Кислая реакция раствора имеет рН от 0 до 7; щелочная — от 7 до 14.

Кислота рассматривается как донор ионов водорода, основание — как их акцептор, т. е. вещество, которое может связывать ионы водорода.

Постоянство кислотно-основного состояния (КОС) поддерживается как физико-химическими (буферные системы), так и физиологическими механизмами компенсации (легкие, почки, печень, другие органы).

Буферными системами называют растворы, обладающие свойствами достаточно стойко сохранять постоянство концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.

Буферная система — это смесь слабой кислоты с солью этой кислоты, образованной сильным основанием.

Примером может служить сопряженная кислотно-основная пара карбонатной буферной системы: Н2СО3 и NaHC03.

В крови существует несколько буферных систем:

1) бикарбонатная (смесь Н2СО3 и НСО3-);

2) система гемоглобин — оксигемоглобин (оксигемоглобин имеет свойства слабой кислоты, а дезоксигемоглобин — слабого основания);

3) белковая (обусловленная способностью белков ионизироваться);

4) фосфатная система (дифосфат — монофосфат).

Самой мощной является бикарбонатная буферная система — она включает 53% всей буферной емкости крови, остальные системы составляют соответственно 35%, 7% и 5%. Особое значение гемоглобинового буфера заключается в том, что кислотность гемоглобина зависит от его оксигенации, то есть газообмен кислорода потенцирует буферный эффект системы.

Исключительно высокую буферную емкость плазмы крови можно проиллюстрировать следующим примером. Если 1 мл децинормальной соляной кислоты добавить к 1 л нейтрального физиологического раствора, который не является буфером, то его рН упадет с 7,0 до 2,0. Если такое же количество соляной кислоты добавить к 1 л плазмы, то рН снизится всего с 7,4 до 7,2.

Роль почек в поддержании постоянства кислотно-основного состояния заключается в связывании или выведении ионов водорода и возвращении в кровь ионов натрия и бикарбоната. Механизмы регуляции КОС почками тесно связаны с водно-солевым обменом. Метаболическая почечная компенсация развивается гораздо медленнее дыхательной компенсации — в течение 6-12 ч.

Постоянство кислотно-основного состояния поддерживается также деятельностью печени.

Большинство органических кислот в печени окисляется, а промежуточные и конечные продукты либо не имеют кислого характера, либо представляют собой летучие кислоты (углекислота), быстро удаляющиеся легкими.

Молочная кислота в печени преобразуется в гликоген (животный крахмал). Большое значение имеет способность печени удалять неорганические кислоты вместе с желчью.

Выделение кислого желудочного сока и щелочных соков (панкреатического и кишечного) также имеет значение в регуляции КОС.

Огромная роль в поддержании постоянства КОС принадлежит дыханию. Через легкие в виде углекислоты выделяется 95% образующихся в организме кислых валентностей.

За сутки человек выделяет около 15 ООО ммоль углекислоты, следовательно, из крови исчезает примерно такое же количество ионов водорода (Н 2 СО 3 = C02↑ + Н 2 0).

 Для сравнения: почки ежедневно экскретируют 40-60 ммоль Н+ в виде нелетучих кислот.

Количество выделяемой двуокиси углерода определяется ее концентрацией в воздухе альвеол и объемом вентиляции.

Недостаточная вентиляция приводит к повышению парциального давления С02 в альвеолярном воздухе (альвеолярная гиперкапния) и соответственно увеличению напряжения углекислого газа в артериальной крови (артериальная гиперкапния). При гипервентиляции происходят обратные изменения — развивается альвеолярная и артериальная гипокапния.

Таким образом, напряжение углекислого газа в крови (РаСO 2 ), с одной стороны, характеризует эффективность газообмена и деятельность аппарата внешнего дыхания, с другой — является важнейшим показателем кислотно-основного состояния, его дыхательным компонентом.

Респираторные сдвиги КОС самым непосредственным образом участвуют в регуляции дыхания. Легочный механизм компенсации является чрезвычайно быстрым (коррекция изменений рН осуществляется через 1-3 мин) и очень чувствительным.

При повышении РаСO 2  с 40 до 60 мм рт. ст. минутный объем дыхания возрастает от 7 до 65 л/мин. Но при слишком большом повышении РаСO2 или длительном существовании гиперкапнии наступает угнетение дыхательного центра с понижением его чувствительности к СO2.

При ряде патологических состояний регуляторные механизмы КОС (буферные системы крови, дыхательная и выделительная системы) не могут поддерживать рН на постоянном уровне. Развиваются нарушения КОС, и в зависимости от того, в какую сторону происходит сдвиг рН, выделяют ацидоз и алкалоз.

В зависимости от причины, вызвавшей смещение рН, выделяют дыхательные (респираторные) и метаболические (обменные) нарушения КОС: дыхательный ацидоз, дыхательный алкалоз, метаболический ацидоз, метаболический алкалоз.

Системы регуляции КОС стремятся ликвидировать возникшие изменения, при этом респираторные нарушения нивелируются механизмами метаболической компенсации, а метаболические нарушения компенсируются изменениями вентиляции легких.

6.1. Показатели кислотно-основного состояния

Кислотно-основное состояние крови оценивается комплексом показателей.

Величина рН — основной показатель КОС. У здоровых людей рН артериальной крови равен 7,40 (7,35-7,45), т.е. кровь имеет слабощелочную реакцию. Снижение величины рН означает сдвиг в кислую сторону — ацидоз (рН < 7,35), увеличение рН — сдвиг в щелочную сторону — алкалоз (рН > 7,45).

Размах колебаний рН кажется небольшим вследствие применения логарифмической шкалы. Однако разница в единицу рН означает десятикратное изменение концентрации водородных ионов. Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) считаются несовместимыми с жизнью.

Колебания рН в пределах 7,35-7,45 относятся к зоне полной компенсации. Изменения рН вне пределов этой зоны трактуются следующим образом:

• субкомпенсированный ацидоз (рН 7,25-7,35);

• декомпенсированнй ацидоз (рН < 7,25);

• субкомпенсированный алкалоз (рН 7,45-7,55);

• декомпенсированный алкалоз (рН > 7,55).

РаСO2 (РСO2) — напряжение углекислого газа в артериальной крови. В норме РаСO2 составляет 40 мм рт. ст. с колебаниями от 35 до 45 мм рт. ст. Повышение или снижение РаСO2 является признаком респираторных нарушений.

Альвеолярная гипервентиляция сопровождается снижением РаСO2 (артериальной гипокапнией) и респираторным алкалозом, альвеолярная гиповентиляция — повышением РаСO2 (артериальной гиперкапнией) и респираторным ацидозом.

Буферные основания (Buffer Base, ВВ) — общее количество всех анионов крови. Поскольку общее количество буферных оснований (в отличие от стандартных и истинных бикарбонатов) не зависит от напряжения СO2, по величине ВВ судят о метаболических нарушениях КОС. В норме содержание буферных оснований составляет 48,0 ± 2,0 ммоль/л.

Избыток или дефицит буферных оснований (Base Excess, BE) — отклонение концентрации буферных оснований от нормального уровня. В норме показатель BE равен нулю, допустимые пределы колебаний ±2,3 ммоль/л.

При повышении содержания буферных оснований величина BE становится положительной (избыток оснований), при снижении — отрицательной (дефицит оснований). Величина BE является наиболее информативным показателем метаболических нарушений КОС благодаря знаку (+ или -) перед числовым выражением.

Дефицит оснований, выходящий за пределы колебаний нормы, свидетельствует о наличии метаболического ацидоза, избыток — о наличии метаболического алкалоза.

Стандартные бикарбонаты (SB) — концентрация бикарбонатов в крови при стандартных условиях (рН = 7,40; РаСO2 = 40 мм рт. ст.; t = 37 °С; SO2 = 100%).

Истинные (актуальные) бикарбонаты (АВ) — концентрация бикарбонатов в крови при соответствующих конкретных условиях, имеющихся в кровеносном русле.

Стандартные и истинные бикарбонаты характеризуют бикарбонатную буферную систему крови. В норме значения SB и АВ совпадают и составляют 24,0 ± 2,0 ммоль/л.

Количество стандартных и истинных бикарбонатов уменьшается при метаболическом ацидозе и увеличивается при метаболическом алкалозе.

6.2. Нарушения кислотно-основного состояния

Метаболический (обменный) ацидоз развивается при накоплении в крови нелетучих кислот.

Он наблюдается при гипоксии тканей, нарушениях микроциркуляции, кетоацидозе при сахарном диабете, почечной и печеночной недостаточности, шоке й других патологических состояниях.

Наблюдается уменьшение величины рН, снижение содержания буферных оснований, стандартных и истинных бикарбонатов. Величина BE имеет знак (-), что свидетельствует о дефиците буферных оснований.

К метаболическому (обменному) алкалозу могут приводить тяжелые нарушения обмена электролитов, потеря кислого желудочного содержимого (например, при неукротимой рвоте), чрезмерное потребление с пищей щелочных веществ. Увеличивается значение рН (сдвиг в сторону алкалоза) — повышается концентрация ВВ, SB, АВ. Величина BE имеет знак (+) — избыток буферных оснований.

Причиной дыхательных нарушений кислотно-основного состояния является неадекватная вентиляция.

Респираторный (дыхательный) алкалоз возникает в результате произвольной и непроизвольной гипервентиляции. У здоровых людей он может наблюдаться в условиях высокогорья, при беге на длинные дистанции, при эмоциональном возбуждении.

Одышка легочного или сердечного больного, когда нет условий для задержки СO2 в альвеолах, искусственная вентиляция легких могут сопровождаться респираторным алкалозом.

Он протекает с повышением рН, снижением РаСO2, компенсаторным уменьшением концентрации бикарбонатов, буферных оснований, нарастанием дефицита буферных оснований.

При выраженной гипокапнии (РаСO2 < 20-25 мм рт. ст.) и респираторном алкалозе могут наступить потеря сознания и судороги. Особенно неблагоприятны гипокапния и респираторный алкалоз в условиях недостатка кислорода (гипоксии). Устойчивость организма к гипоксии при этом резко падает. С этими нарушениями обычно связывают летные происшествия.

Респираторный (дыхательный) ацидоз развивается на фоне гиповентиляции, которая может быть следствием угнетения дыхательного центра. При тяжелой дыхательной недостаточности, связанной с патологией легких, возникает респираторный ацидоз. Величина рН при этом смещена в сторону ацидоза, напряжение СО2 в крови повышено.

При значительном (более 70 мм рт. ст.) и достаточно быстром повышении РаСO2 (например, при астматическом статусе) может развиться гиперкапническая кома. Сначала появляются головная боль, крупный тремор рук, потливость, затем психическое возбуждение (эйфория) или сонливость, спутанность сознания, артериальная и венозная гипертензия. Далее появляются судороги, потеря сознания.

Гиперкапния и респираторный ацидоз могут быть следствием пребывания человека в атмосфере с повышенным содержанием углекислого газа.

При хронически развивающемся дыхательном ацидозе наряду с повышением РаС0 2  и снижением рН наблюдается компенсаторное увеличение бикарбонатов и буферных оснований. Величина BE, как правило, имеет знак (+) — избыток буферных оснований.

При хронических заболеваниях легких может возникнуть и метаболический ацидоз. Его развитие связывают с активным воспалительным процессом в легких, гипоксемией, недостаточностью кровообращения. Метаболический и респираторный ацидоз нередко сочетаются, в результате чего возникает смешанный ацидоз.

Первичные сдвиги КОС не всегда можно отличить от компенсаторных вторичных. Обычно первичные нарушения показателей КОС выражены больше, чем компенсаторные, и именно первые определяют направление сдвига рН.

Правильная оценка первичных и компенсаторных сдвигов КОС — обязательное условие адекватной коррекции этих нарушений.

Чтобы избежать ошибок в трактовке КОС, необходимо наряду с оценкой всех его компонентов учитывать РаO2 и клиническую картину заболевания.

Определение рН крови осуществляется электрометрическим способом с использованием стеклянного электрода, чувствительного к ионам водорода.

Для определения напряжения углекислого газа в крови используется эквилибрационная методика Аструпа или электрод Северингхауса. Значения, характеризующие метаболические компоненты КОС, рассчитывают с помощью номограммы.

Исследуется артериальная кровь или артериализированная капиллярная кровь из кончика прогретого пальца. Требуемый объем крови не превышает 0,1-0,2 мл.

В настоящее время выпускаются приборы, определяющие рН, напряжение СO2 и O2 крови; расчеты производятся микрокомпьютером, входящим в состав прибора.

  О чем говорят анализы

Источник: http://www.deus1.com/rasshifrovka-analizov-6.html

WikiMedikKonsult.Ru
Добавить комментарий