Белки

Аминокислоты, белки. Строение белков. Уровни организации белковой молекулы. урок. Биология 10 Класс

Белки

Среди органических соединений клетки белки являются наиболее важными. белков в клетке колеблется от 50 % до 80 %.

Белки – это высокомолекулярные органические соединения, которые состоят из углерода, водорода, кислорода, серы и азота. В состав некоторых белков входит фосфор, а также катионы металлов.

Белки являются биополимерами, которые состоят из мономеров аминокислот. Их молекулярная масса варьируется от нескольких тысяч до нескольких миллионов, в зависимости от количества аминокислотных остатков.

В состав белков входит всего 20 типов аминокислот из 170, найденных в живых организмах.

Аминокислоты (см. Рис. 1) – органические соединения, в молекулах которых одновременно присутствует аминогруппа () с основными свойствами и карбоксильная группа () с кислотными свойствами. Часть молекулы, называемая радикалом (R), у разных аминокислот имеет различное строение.

Рис. 1. Аминокислота

В зависимости от радикала аминокислоты делят на (см. Рис. 2):

1. кислые (в радикале карбоксильная группа);

2. основные (в радикале аминогруппа);

3. нейтральные (не имеют заряженных радикалов).

Рис. 2. Классификация аминокислот

Аминокислоты соединяются друг с другом посредством пептидной связи. Эта связь образуется путем выделения молекулы воды при взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой аминокислоты. Реакция, идущая с выделением воды, называется реакцией конденсации, а возникающая ковалентная азот-углеродная связь – пептидной связью.

Рис. 3. Дипептид

Соединения, образующиеся в результате конденсации двух аминокислот, представляют собой дипептид (см. Рис. 3).

На одном конце его молекулы находится аминогруппа, а на другом – свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие молекулы.

Если таким образом соединяется много аминокислот, то образуется полипептид (см. Рис. 4).

Рис. 4. Полипептид

Полипептидные цепи бывают очень длинными и могут состоять из различных аминокислот. В состав белковой молекулы может входить как одна полипептидная цепь, так и несколько таких цепей.

Многие животные, включая человека, в отличие от бактерий и растений не могут синтезировать все аминокислоты, которые составляют белковые молекулы. То есть существует ряд незаменимых аминокислот, которые должны поступать с пищей.

К незаменимым аминокислотам относятся: лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, тирозин, метионин.

Ежегодно в мире производится более двухсот тысяч тонн аминокислот, которые используются в практической деятельности человека. Они применяются в медицине, парфюмерии, косметике, сельском хозяйстве.

В большей степени производят глутаминовую кислоту и лизин, а также глицин и метионин.

Назначение аминокислот

1. Глутаминовая кислота

Используется в психиатрии (при эпилепсии, для лечения слабоумия и последствий родовых травм), в комплексной терапии язвенной болезни и при гипоксии. Также она улучшает вкус мясных продуктов.

2. Аспарагиновая кислота

Аспарагиновая кислота способствует повышению потребления кислорода сердечной мышцей. В кардиологии применяют панангин – препарат, содержащий аспартат калия и аспартат магния. Панангин применяют для лечения различного рода аритмий, а также ишемической болезни сердца.

3. Метионин

Защищает организм при отравлениях бактериальными эндотоксинами и некоторыми другими ядами, в связи с этим используется для защиты организма от токсикантов окружающей среды. Обладает радиопротекторными свойствами. 

4. Глицин

Является медиатором торможения в центральной нервной системе. Используется как успокаивающее средство, применяется при лечении хронического алкоголизма.

5. Лизин

Основная пищевая и кормовая добавка. Используется в качестве антиоксидантов в пищевой промышленности (предотвращает порчу пищевых продуктов).

Отличие между белками и пептидами заключается в количестве аминокислотных остатков. В белках их более 50, а в пептидах менее 50.

В настоящее время выделено несколько сотен различных пептидов, которые выполняют в организме самостоятельную физиологическую роль.

К пептидам относятся:

1. Пептидные антибиотики (грамицидин S).

2. Регуляторные пептиды – вещества, регулирующие многие химические реакции в клетках и тканях организма. К ним относятся: пептидные гормоны (инсулин), окситоцин, стимулирующий сокращение гладкой мускулатуры.

3. Нейропептиды.

В зависимости от строения различают простые и сложные белки.

1. Простые белки состоят только из белковой части.

2. Сложные имеют небелковую часть.

Если в качестве небелковой части используется углевод, то это гликопротеиды.

Если в качестве небелковой части используются липиды, то это липопротеиды.

Если в качестве небелковой части используются нуклеиновые кислоты, то это нуклеопротеиды.

Белки имеют 4 основных структуры: первичную, вторичную, третичную, четвертичную (см. Рис. 5).

Рис. 5. Структура белка

1. Под первичной структурой понимают последовательность аминокислотных остатков в полипептидной цепи. Она уникальна для любого белка и определяет его форму, свойства и функции.

Значительное совпадение первичной структуры характерно для белков, выполняющих сходные функции. Замена всего лишь одной аминокислоты в одной из цепей может изменить функцию молекулы белка. Например, замена глутаминовой кислоты на валин приводит к образованию аномального гемоглобина и к заболеванию, которое называется серповидноклеточная анемия.

2. Вторичная структура – упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей.

3. Третичная структура – укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков.

4. Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами.

Утрата белковой молекулой своей природной структуры называется денатурацией. Она может возникнуть при воздействии температуры, химических веществ, при нагревании и облучении.

Если при денатурации не нарушены первичные структуры, то при восстановлении нормальных условий белок способен воссоздать свою структуру. Этот процесс носит название ренатурация (см. Рис. 6). Следовательно, все особенности строения белка определяются первичной структурой.

Рис. 6. Денатурация и ренатурация

Серповидноклеточная анемия – это наследственная болезнь, при которой эритроциты, участвующие в переносе кислорода, выглядят не в виде диска, а принимают форму серпа (см. Рис. 7). Непосредственной причиной изменения формы является небольшое изменение химической структуры гемоглобина (основного компонента эритроцита).

Рис. 7. Внешний вид нормального и серповидного эритроцита

Симптомы: потеря трудоспособности, постоянная отдышка, учащенное сердцебиение, пониженный иммунитет.

Одним из признаков серповидноклеточной анемии является желтизна кожных покровов.

Существуют различные формы заболевания. В самой тяжелой форме у человека происходит задержка развития, такие люди не доживают до подросткового возраста.

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Vmede.org (Источник).
  2. .com (Источник).
  3. Bio-faq.ru (Источник).

Домашнее задание

  1. Вопросы 1-6 в конце параграфа 11 (стр. 46) – Каменский А.А., Криксунов Е.А., Пасечник В.В. «Общая биология», 10-11 класс (Источник)
  2. Какие функциональные группы входят в состав аминокислот?

Источник: https://interneturok.ru/lesson/biology/10-klass/bosnovy-citologii-b/aminokisloty-belki-stroenie-belkov-urovni-organizatsii-belkovoy-molekuly

Продукты содержащие больше всего белка

Белки

Каждому интересующемуся здоровым питанием человеку не раз доводилось слышать и читать о важности белка, который часто называют основой жизни. Это не преувеличение, а соответствующая действительности реальность. Следя за рационом, всегда нужно учитывать то, что количество белка в нем должно составлять не менее 30%. Аналогичное число должно приходиться на жиры, а на углеводы — 40%.

Составление сбалансированного меню требует знания того, в каких продуктах больше всего белка, как правильно рассчитать суточную норму. Кроме того, немаловажным аспектом правильного рациона является и грамотное сочетание продуктов друг с другом.

Суточная норма употребления белка

Для женщин она составляет один грамм на каждый килограмм собственного веса. И если представительница прекрасного пола весит 60 килограмм, ей необходимо 60 грамм белка. Количество увеличивается до 1,2 грамма, когда посещают спортивный зал.

Мужчины, которые не занимаются спортом, должны употреблять 1,2 грамма белка на каждый килограмм своей массы. Это количество увеличивается, если речь идет об активном образе жизни, подразумевающем посещение тренажерного зала.

Обеспечить организм требуемым количеством белка в течение суток позволяет знание того, какие продукты богаты этим важным для человека соединением.

10 продуктов с наибольшим содержанием белка

  • Мясо птицы – от 17 до 22 грамм (на 100 грамм продукта)
  • Мясо – от 15 до 20 грамм
  • Рыба — от 14 до 20 грамм
  • Морепродукты – от 15 до 18 грамм
  • Бобовые – от 20 до 25 грамм
  • Орехи – от 15 до 30 грамм.
  • Яйца – 12 грамм
  • Твердый сыр – от 25 до 27 грамм
  • Творог – от 14 до 18 грамм
  • Крупы – от 8 до 12 грамм

Белки мяса таблица

Продукт питанияБелок (в граммах)
 Курица20,8
 Индейка 21,6
 Говядина 18,9
 Свинина 11,4-16,4
 Баранина 16,3
 Колбаса вареная 10,1-13,7
 Колбаса копченая 16,2-28,2

Белки рыбы и морепродуктов

Продукт питанияБелок (в граммах)
Кальмар18,0
Краб16,0
Креветки18,0
Скумбрия18,0
Камбала16,1
Горбуша 21,0
Мойва 13,4
Сельдь 17,7
Судак 19,0
Треска 17,5
Осетр16,4
Лещ17,1
Минтай15,9
Семга20,8
Рыбные консервы в масле17,4-20,7
Рыбные консервы в томате12,8-19,7
Рыбные консервы в собственном соку20,9-28,7

Молочные белки

Продукт питанияБелок (в граммах)
Молоко2,8
Кефир 2,8-3,0
Сметана 2,8-3,0
Йогурт 5,0
Сливки 2,8-3,0
Сыр 23,4-26,8
Творог 14,0-18,0

Крупы

Продукт питанияБелок (в граммах)
Овсяная11,0
Гречневая10,8
Рисовая7,0
Пшенная11,5
Перловая9,3
Манная11,3
Геркулесовая13,1

Приводимые данные в таблицах представляют собой абсолютную величину, но процент усвоения белка организмом не у всех достигает стопроцентной отметки.

Таблица усвояемости белка

Источник белкаКоэффициент усвояемости
Молоко100%
Изолированный соевый белок Супро100%
Говядина92%
Рыба92%
Другой изолированный соевый белок92%
Мясо птицы механической обвалки70%
Фасоль консервированная68%
Овес57%
Рис54%
Арахис42%
Кукуруза42%
Пшеничная клейковина27%

Чтобы найти, сколько белка поступает в организм, к приведенному выше вычислению прибавляют 50%, что составит 90 грамм, то есть 65х1+50%.

Распределение белка в течение суток

Происходит по двум основным схемам:

Первая. Предполагает распределение пищи с высоким содержанием белка на пять порций, которые съедают в течение дня.

Вторая. На завтрак и ужин съедают по 20%, а на обед — 45% белка. Остальная суточная норма распределяется по 5% на перекусы, после главных приемов пищи.

Независимо от выбранной схемы, следует учитывать то, что каждая порция должна быть не более 300-350 г. Главное, подобрать для себя продукты, которые больше всего по вкусу.

Примерное дневное меню

К завтраку можно подать постный кусочек мяса, белковый (протеиновый) коктейль, целое яйцо или белок, йогурт греческий.

На ужин и обед отлично подойдет тофу, мясо индейки, куриные грудка и колбаса, постный фарш из говядины, лосось, креветки, тунец и треска.

В качестве перекуса можно покушать очищенные семечки, выпить протеиновый коктейль, съесть орехи, что-либо из бобовых.

Источник: https://builderbody.ru/produkty-soderzhashhie-bolshe-vsego-belka/

Белки

Белки

Белок является важным строительным материалом нашего организма. Из него состоит каждая клетка организма, он входит в состав всех тканей и органов. Кроме того, особая разновидность белков исполняет роль ферментов и гормонов в живом организме.

Помимо строительной функции, белок также может являться источником энергии. А в случае избытка белка, печень «предусмотрительно» преобразует белок в жиры, которые откладываются про запас в организме (как избавиться от такого жира?).

В теле человека содержится 22 аминокислоты: 13 аминокислот организм может синтезировать самостоятельно из имеющегося строительного материала, а 9 из них он может получить только с пищей.

В процессе усвоения организмом белки распадаются на аминокислоты, которые в свою очередь поставляются в разные части организма, для выполнения своих основных функций. Белки (в виде аминокислот) входят в состав крови, являются составляющими гормональной системы, щитовидной железы, влияют на рост и развитие организма, регулируют водный и кислотно-щелочной баланс организма.

Продукты богатые белками:

Указано ориентировочное количество в 100 г продукта

Желатин пищевой87,2 г Горчица молотая37,1 г Соя
34,9 г Тыквенные семечки30,2 г Икра осетровая28,9 г Молоко сухое28,5 г Арахис
26,3 г Порошок какао24,3 г «Сервелат»
24 г Сыр «Российский»
23,2 г Горох лущеный23 г Тунец
22,7 г Фасоль
22 г Творог
22 г Кета22 г

Индейка21,6Палтус18,9Брынза 17,9Вареная колбаса12,1
Куриный окорочок21,3Телятина19,7Сельдь17,7Пшено12,0
Мясо кролика21,2Говядина18,9Говяжья печень17,4Овсянка11,9
Горбуша21Свиная печень18,8Свиные почки16,4 Свинина жирная11,4
Креветки20,9Баранья печень18,7Фундук16,1Хлеб пшеничный7,7
Куры20,8Цыплята18,7Минтай15,9Сдобная выпечка7,6
Семга20,8Миндаль18,6Сердце15Рисовая каша7
Семя подсолнечника20,7Кальмар18Грецкий орех13,8Хлеб ржаной4,7
Сайра мелкая20,4Скумбрия18Докторская варенка13,7Кефир нежирный3
Баранина20Творог нежирный18Гречневая ядрица 12,6Молоко2,8

Рекомендуемая потребность в белках для взрослого человека 0,8 г на 1кг веса. Этот показатель можно найти в таблицах расчета идеальной массы тела. Фактический вес человека в данном случае не учитывается, вследствие того, что аминокислоты предназначены для клеточной массы тела, а не для жировых отложений.

Согласно правилам диетологии, белковая пища должна составлять около 15% от общей калорийности ежедневного рациона. Хотя этот показатель может варьироваться в зависимости от рода деятельности человека, а также состояния его здоровья.

Потребность в белках возрастает:

  • Во время болезни, особенно после операции, а также в период выздоровления.
  • Во время работ, требующих сильного физического напряжения.
  • В холодное время года, когда организм затрачивает больше сил на обогрев.
  • Во время интенсивного роста и развития организма.
  • Во время спортивных соревнований, а также подготовки к ним.

Потребность в белках снижается:

  • В теплое время года. Это связано с химическими процессами в организме, происходящими при воздействии тепла.
  • С возрастом. В преклонном возрасте обновление организма происходит медленнее, поэтому белков требуется меньше.
  • При заболеваниях, связанных с усваиваемостью белков. Одной из таких болезней является подагра.

Усваиваемость белков

Когда человек употребляет углеводы, процесс их переваривания начинается еще во время пребывания их во рту. С белками же всё по-другому. Их переваривание начинается только в желудке, при помощи соляной кислоты.

Однако, поскольку молекулы белка являются очень крупными, перевариваются белки достаточно трудно. Для улучшения усвоения белков, необходимо употреблять продукты, содержащие белок в наиболее усваиваемой и легкой его форме.

К таковым относится белок яиц, а также белок, содержащийся в кисломолочных продуктах, таких как кефир, ряженка, брынза и т.д.

Согласно теории раздельного питания, белковая пища хорошо сочетается с различной зеленью и листовыми овощами. Современные диетологи утверждают, что белок лучше усваивается в присутствии жиров и углеводов, которые являются основными источниками энергии для организма.

Поскольку белковая пища в организме задерживается значительно дольше углеводистой, то чувство сытости после употребления белков сохраняется значительно дольше.

В зависимости от своей специализации белки выполняют в организме различные функции. Транспортные белки, например, занимаются доставкой витаминов, жира и минералов ко всем клеткам организма.

Белки-катализаторы ускоряют различные химические процессы, происходящие в организме. Также существуют белки, которые борются с различными инфекциями, являясь антителами к различным заболеваниям.

Кроме того, белки являются источниками важных аминокислот, которые необходимы как строительный материал для новых клеток и укрепления уже имеющихся.

Взаимодействие с эсенциальными элементами

Все в природе взаимосвязано, и также все взаимодействует в нашем организме. Белки, как часть всеобщей экосистемы, взаимодействуют с другими элементами нашего организма – витаминами, жирами и углеводами. Мало того, помимо простого взаимодействия, белки участвуют также в трансформации одного вещества в другое.

Что касается витаминов, то на каждый грамм потребленного белка, необходимо употребить 1 мг витамина С. При недостатке витамина С, будет усвоено только то количество белка, на которое хватит содержащегося в организме витамина.

  • Слабость, нехватка энергии. Потеря работоспособности.
  • Снижение либидо. При медицинских исследованиях может обнаружиться нехватка некоторых половых гормонов.
  • Низкая сопротивляемость различным инфекциям.
  • Нарушение функций печени, нервной и кровеносной системы, функционирования кишечника, поджелудочной железы, обменных процессов.
  • Развивается атрофия мышц, замедляется рост и развитие организма у детей.
  • Хрупкость костной системы, возникающая в результате закисления организма, которая приводит к вымыванию кальция из костей.
  • Нарушение водного баланса в организме, что также может привести к отекам, и неусваиваемости витаминов.
  • Развитие подагры, которую в старину называли «болезнью богатых людей», также является прямым следствием избытка белка в организме.
  • Избыточный вес также может стать следствием неумеренного потребления белков. Это связано с деятельностью печени, которая лишний для организма белок преобразовывает в жировую ткань.
  • Рак кишечника, по утверждению некоторых научных источников, может стать следствием повышенного содержания пуринов в пище.

Состав и количество пищи. Так как незаменимые аминокислоты организм не может синтезировать самостоятельно.

Возраст. Известно, что в детском возрасте количество белка, необходимого для роста и развития организма, более чем в 2 раза превышает потребность в белке человека средних лет! В пожилом возрасте все обменные процессы протекают гораздо медленнее, а, следовательно, потребность организма в белках существенно сокращается.

Физический труд и профессиональный спорт. Для поддержания тонуса и работоспособности спортсменам и людям, занимающимся интенсивным физическим трудом, требуется увеличенная в 2 раза норма потребления белка, так как в их организме очень интенсивно проходят все обменные процессы.

Как мы уже говорили, существуют 2 большие группы белков: белки, являющиеся источниками заменимых и незаменимых аминокислот. Незаменимых аминокислот всего 9: треонин, метионин, триптофан, лизин, лейцин, изолейцин, фенилаланин, валин. Именно в этих аминокислотах особо нуждается наш организм, так как усваиваются они только из пищи.

В современной диетологии существует такое понятие, как полный и неполный белок. Белковая пища, содержащая все незаменимые аминокислоты, называется полным белком, неполным белком считается пища, содержащая лишь некоторые из незаменимых аминокислот.

К продуктам, содержащим полноценный высококачественный белок, относятся мясные, молочные продукты, морепродукты и соя. Пальма первенства в списке таких продуктов принадлежит яйцам, которые по медицинским критериям считаются золотым стандартом полноценного белка.

Неполноценный белок чаще всего содержится в орехах, различных семенах, хлебных злаках, овощах, бобовых, некоторых фруктах.

Сочетая в одном приеме пищи продукты, содержащие неполноценный белок с полноценным, можно добиться максимального усвоения неполноценного белка. Для этого достаточно включить в свой рацион лишь небольшое количество продуктов животного происхождения, и польза для организма будет существенной.

Белок и вегетарианство

Некоторые люди по своим морально-этическим убеждениям, полностью исключили мясные продукты из своего рациона. Наиболее известные из них – Ричард Гир, звезда «Голубой лагуны» Брук Шилдс, великолепная Памела Андерсон, а также непревзойденный российский юморист Михаил Задорнов.

Однако, для того, чтобы организм не чувствовал себя обделенным, необходима полноценная замена рыбе и мясу. Тем, кто употребляет молоко, творог, яйца, конечно же, легче.

Тем же, кто полностью отказался от животных белков, приходится проявлять большую изобретательность, чтобы организм не страдал от недостатка белка.

Особенно это касается детского быстрорастущего организма, который при недостатке аминокислот способен притормозить рост и нормальное развитие.

Благодаря определенным исследованиям, связанным с изучением усвоения растительного белка организмом, стало известно, что определенные сочетания такого белка могут обеспечить организм полным набором незаменимых аминокислот. Вот эти сочетания: грибы–злаки; грибы–орехи; бобовые–злаки; бобовые–орехи, а также разные виды бобовых, сочетающиеся в одном приеме пищи.

Но это всего лишь только теория и пройдет время, прежде чем она будет полностью подтверждена либо опровергнута.

Среди растительных белковых продуктов, звание «чемпиона» по содержанию белка достается сое. В 100 граммах сои содержится более 30% полноценного белка. Японский суп «мисо», соевое мясо и соевый соус – это далеко не все деликатесы, которые готовят из этого удивительного продукта. Грибы, чечевица, фасоль и горох содержат в 100 граммах от 28 до 25% неполноценного белка.

Авокадо сравнимо по содержанию белка со свежим коровьем молоком (в нем содержится около 14% белкового вещества). Кроме того, фрукт содержит полиненасыщенные жирные кислоты Омега-6 и пищевые волокна. Орехи, гречка, брюссельская и цветная капуста, а также шпинат и спаржа завершают наш далеко не полный список продуктов, богатых растительным белком.

Белки в борьбе за стройность и красоту

Для желающих оставаться всегда подтянутыми и красивыми, диетологи рекомендуют придерживаться определенной схемы питания до и после тренировок:

  1. 1 Для того, чтобы нарастить мышечную массу и приобрести спортивную фигуру рекомендуется есть белковую пищу за час до тренировки. Например, половину тарелки творога или другой кисломолочный продукт, куриную грудку или индюшку с рисом, рыбу с салатом, омлет с овсянкой.
  2. 2 Для обретения спортивной фигуры, есть разрешается уже через 20 минут после тренировки. Притом, употреблять следует белковую и углеводистую пищу, но никак не жиры.
  3. 3 Если цель тренировки – обрести стройность и изящество, без наращивания мышечной массы, тогда белковую пищу следует употреблять не ранее, чем через 2 часа после окончания занятий. Перед тренировкой не есть белки в течение 5 часов вообще. Последний прием пищи (углеводы) за 2 часа до занятий.
  4. 4 А теперь насчет поддержания правильного метаболизма в организме. По утверждению диетологов, белки рекомендуется употреблять во второй половине дня. Они сохраняют длительное время чувство сытости, а это является отличной профилактикой обильных ночных трапез.
  5. 5 Красивая кожа, пышные и блестящие волосы, крепкие ногти – результат деятельности достаточного количества незаменимых аминокислот в рационе питания, действующих совместно с витаминами и микроэлементами.

Мы собрали самые важные моменты о белках в этой иллюстрации и будем благодарны, если вы поделитесь картинкой в социальной сети или блоге, с ссылкой на эту страницу:

Редактор раздела «Нутриенты» Людмила Малахова, © Еда+

Источник: https://edaplus.info/proteins.html

Лекция № 3. Строение и функции белков. Ферменты

Белки

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми.

Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными.

Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное.

В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной.

В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов.

На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 1020.

Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций.

В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка.

Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами.

Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость.

На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

                

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков.

Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия.

В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы.

У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям.

Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин.

Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Купить проверочные работы
по биологии

Аминокислотный состав, структура белковой молекулы определяют его свойства. Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства.

Способность отдавать и присоединять Н+ определяют буферные свойства белков; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген).

Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией. Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные.

Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций.

Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой, в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией.

Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой.

Ферменты

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью.

Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов.

Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е.

в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром.

Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции.

Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия.

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента.

При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента.

Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами, если тормозят — ингибиторами.

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С–С, С–N, С–О, С–S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С–С, С–N, С–О, С–S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

  • Перейти к лекции №2 «Строение и функции углеводов и липидов»
  • Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»
  • Смотреть оглавление (лекции №1-25)

Источник: https://licey.net/free/6-biologiya/21-lekcii_po_obschei_biologii/stages/257-lekciya_3_stro

Органические вещества клетки: белки — урок. Биология, Общие биологические закономерности (9–11 класс)

Белки

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые(имея в своём составе карбоксильную и аминогруппы)обладают свойствами кислоты и основания (амфотерны).

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего \(20\) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

Разрушение первичной структуры необратимо.

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении \(1\) г белка до конечных продуктов выделяется \(17,6\) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

Источник: https://www.yaklass.ru/p/biologia/obschie-biologicheskie-zakonomernosti/tcitologiia-nauka-o-kletke-17330/khimicheskii-sostav-kletki-16040/re-e49d7227-24e6-4088-ac25-5ba28bc78f36

WikiMedikKonsult.Ru
Добавить комментарий